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EMISSIVE EXCHANGE BETWEEN PARTICLES

DANIEL MACKOWSKIa∗ AND MICHAEL MISHCHENKO b

ABSTRACT. A formulation is developed to predict the exchange of emission between dis-
crete points in a particle and between neighboring particles. The formulation relies on the
volume integral equation for time harmonic fields, coupled to a VSWF, T matrix represen-
tation.

1. Introduction

An emerging topic, in the general field of radiative transport, is that related to ”nanoscale”
heat transfer. In particular, it has been recognized that near–field coupling of electromag-
netic (EM) fields – via a process often referred to as photon tunneling – can significantly
augment the rate of thermal emission between two objects when the distance separating
the objects becomes on the order of nanometers[1]. In the past, prediction of near–field
emission has employed the fluctuation–dissipation theory of Rytov, in which the emitted
EM field is modeled as that produced by phase–uncorrelated, randomly oriented dipole
sources within the emitting medium [2]. Application of the theory to a specified geomet-
rical system, e.g., a sphere or a pair of spheres, involves solution of time harmonic yet
inhomogeneous Maxwell’s equations for the system, and the inhomogeneity of the prob-
lem – which accounts for the emissive source function – results in a solution that is more
complex than that for the corresponding homogeneous problem, i.e., the conventional plane
wave scattering problem for the system [3].

The purpose of the presented work is to demonstrate that the volume integral formu-
lation (VIE), coupled with a T matrix representation, provides sufficient information to
predict emissive exchange, on both a point–to–point and a particle–to–particle basis. The
work is an extension and a generalization of our previous formulation for emissive ex-
change between spheres [4].

2. Formulation

The space constraints of the abstract prevent a complete and detailed mathematical ex-
position, and we will attempt to convey the salient features of the formulation. The foun-
dation of our formulation lies in the volume integral equation (VIE) representation of EM
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scattering from particles [5, 6]. We will use the VIE to 1) develop the basic T matrix rela-
tionships for a particle, and 2) identify cross sections describing the exchange of emissive
energy among different points within the same particle, and among different particles.

The VIE formulation is made more convenient for the problem at hand by transforming
it so that the cartesian vector components (x, y, z) of the relevant quantities (fields, dyadic
operators) are replaced by dipole azimuthal degree components (−1, 0, 1). By doing so,
the field external to the particle, denoted as E(r), resulting from an exciting field Eexc(r),
can be described by a vector spherical wave function (VSWF) expansion,

E(r) = Eexc(r) + aµ N
(3)
µ (r), r ∈ Vext,C (1)

aµ =


Vint

Jµm(−r′)


Vint

T
(2)
mk(r

′, r′′)P∗
k ·Eexc(r

′′) d3r′′ d3r′ (2)

in which N(3) is the outgoing VSWF, J is the regular translation matrix for the VSWF, and
T

(2)
mk(r, r

′) is the two–point T matrix, which is basically the azimuth–transformed dyadic
transition operator. In the above and what follows, Greek subscripts are shorthand for the
triplet of degree, order, and mode (= 1, TM, = 2, TE), and the Roman subscripts m and
k (and their primes) imply the dipole–level harmonics, for which order = 1, mode = TM,
and m, k = −1, 0, 1. A tensorial convention is also adopted, for which summation over
subscripts not appearing in the left–hand–side of the equation is implied. The quantity Pk

is a cartesian vector which performs the cartesian-to-azimuthal degree transformation; the
3× 3 matrix formed by (P−1,P0,P1) is unitary. The regions Vint and Vext,C refer the
points within the particle and points outside of the circumscribing sphere surrounding the
particle.

The two–point T matrix is a solution to the VIE

1

α
T

(2)
mk(r, r

′) = δ(r− r′)δm−k +


Vint

Hmm′(r− r′′)T
(2)
m′k(r

′′ r′) d3r′′, r, r′ ∈ Vint

(3)

α =
i k3

6π
(m2 − 1) (4)

where m is the particle refractive index and Hmk(r−r′) is the outgoing translation matrix
for dipole–dipole interaction; this quantity results from the azimuth transformation of the
dyadic Green’s function.

When the exciting field originates from sources located solely in Vext,C – as would
be the case for a plane wave – it is possible to represent the exciting field for all points
r ∈ Vint as a regular VSWF expansion centered about the particle origin. For this case,
application of the VSWF translation theorem to Eq. (1) will show that

aµ = Tµ ν fν (5)

Tµ ν =


Vint

Jµm(−r)


Vint

T
(2)
mk(r, r

′) Jk ν(r
′) d3r′ d3r (6)

=


Vint

Jµm(−r)T (1)
mν(r) d

3r (7)
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where fν denote the expansion coefficients for the exciting field. The above formulas de-
fine two additional operator matrices, being the one point matrix T

(1)
mν(r) and the standard

Tµ ν matrix, via successive integrations of the two point matrix (i.e., the transition dyad)
over particle volume. In this respect, the T matrix for the particle can be viewed simply as
an integral transform of the operator–based solution to the VIE.

By using the T (1) and T formulas in Eq. (3), and applying the properties of the transla-
tion matrices, it is possible to derive the important energy conservation statement of

Cext = Cabs + Csca (8)

Cext = −2π

k2
ReTµµ, Csca =

2π

k2
|Tµ ν |2 (9)

Cabs = −2π

k2
Re


1

α

 
Vint

T (1)
mµ(r)

2 d3r (10)

When the particle is non absorbing, for which Reα = 0, the T matrix will be unitary.
An additional, point–level energy conservation statement can be obtained, again by

starting with Eq. (3). This results in

C ′
sor(r) = C ′

emi(r) +


Vint

C ′′
xch(r, r

′) d3r′, r ∈ Vint (11)

C ′
sor(r) =

2π

k2
Re


1

α


ReT (2)

mm(r, r), C ′
emi(r) = −2π

k2
Re


1

α

 T (1)
mµ(r)

2 (12)

C ′′
xch(r, r

′) =
2π

k2


Re


1

α

2 T (2)
mk(r, r

′)
2 (13)

Equation (11) can be interpreted as a spectral emissive energy balance for points within an
isothermal particle. When multiplied by the spectral blackbody function, the source density
function C ′

sor(r) (units of area/volume) would describe the emissive power density from
point r. Part of this energy is absorbed at all other points in the particle, and the remainder
escapes the particle; these two components are represented by the two terms on the right
hand side. The emission cross section of the particle is obtained from the volume integral
of C ′

emi(r), and per Eq. (10), is equal to the absorption cross section.
Via the principle of detailed balancing, we submit that the exchange and emission den-

sity functions could be used to describe the net transfer of emitted EM energy in a non-
isothermal particle. For the case of a cold environment (i.e., no external fields), the net
spectral transfer of energy at point r, per unit volume, would be described by

Q′
λ(r) =


Vint

C ′′
exc(r, r

′) (Ibλ(r
′)− Ibλ(r)) d

3r′ + C ′
emi(r) Ibλ(r)


dλ (14)

where Ibλ(r) denotes the spectral blackbody intensity evaluated at the local temperature
of point r. When integrated over volume (d3r), the term involving the exchange function
will cancel out, and the net emission from the particle would be obtained from the volume
integral of C ′

emi(r) Ibλ(r).
The T matrix formulation enables a straightforward extension of the analysis to multi-

ple, interacting particles. Providing the particles are separated by at least their circumscrib-
ing radii – so that a T matrix formulation can be used to describe the scattered field from
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each particle – the starting point for analysis is the set of multipole interaction equations
that describe the scattered field coupling among the particles. The equations are analogous
to Eq. (3), and appear as

T (2)
µ ν (i, j) = Tµµ′(i)


δi−jδµ′−ν +


i′

Hµ′ ν′(i− i′)T
(2)
ν′ ν(i

′, j)


(15)

where Tµ ν(i) is the T matrix for particle i (i.e., Eq. (6) for particle i) and T
(2)
µ ν (i, j) relates

the scattering coefficients for particle i due to an incident field at particle j. And as before,
source and exchange cross sections can be derived from energy conservation principles
applied to Eq. (15), and are given by

Csor(i) =
2π

k2
Dµ ν(i)ReT

(2)
ν ν (i, i) (16)

Cexc(i, j) =
2π

k2
Dµ ν(i)Dµ ν′(j)

T (2)
ν ν′(i, j)

2 (17)

where

Dµ ν(i) = −Re

[T (i)]

−1
µ ν + δµ−ν


(18)

For isothermal particles, Csor(i) Ibλ(Ti)dλ will be the spectral emitted energy leaving
particle i, and Cexc(j, i) Ibλ(Ti)dλ will be the amount of this energy that is absorbed by
particle j.

Issues related to the calculation of the exchange cross sections, as well as an examina-
tion of the effects of field coupling among closely–spaced particles, will be presented at
the meeting.

References
[1] J.-P. Mulet, K. Joulain, R. Carminati, J.-J. Greffet, Nanoscale radiative heat transfer between a small particle

and a plane surface, App. Phys. Let. 78 (2001) 2931–2933.
[2] S. M. Rytov, Theory of Electric Fluctuations and Thermal Radiation, Air Force Cambridge Research Center,

Bedford, MA, 1959.
[3] A. Narayanaswamy, D.-Z. Chen, G. Chen, Near–field radiative energy transfer between two spheres, in:

Proceedings of 2006 ASME International Mechanical Engineering Congress and Exposition, 2006, aSME
Paper No. IMECE2006-15845.

[4] D. W. Mackowski, M. Mishchenko, Prediction of thermal emission and exchange among neighboring
wavelength-sized spheres, ASME J. Heat Transfer 130 (11) (2008) 112702.
URL http://link.aip.org/link/?JHR/130/112702/1

[5] L. Tsang, J. A. Kong, K. Ding, Scattering of Electromagnetic Waves, Theories and Applications, Wiley,
2000.

[6] M. I. Mishchenko, L. D. Travis, A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer
and Coherent Backscattering, Cambridge University Press, 2006.

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 89, Suppl. No. 1, C1V89S1P062 (2011) [5 pages]

http://link.aip.org/link/?JHR/130/112702/1


EMISSIVE EXCHANGE BETWEEN PARTICLES C1V89S1P062-5

a Department of Mechanical Engineering
Auburn University, AL 36849, USA

b NASA Goddard Institute for Space Studies
2880 Broadway, New York, NY 10025, USA

∗ To whom correspondence should be addressed | Email: mackodw@auburn.edu

Paper presented at the ELS XIII Conference (Taormina, Italy, 2011), held under the APP patronage;
published online 15 September 2011.

© 2011 by the Author(s); licensee Accademia Peloritana dei Pericolanti, Messina, Italy. This article is
an open access article, licensed under a Creative Commons Attribution 3.0 Unported License.

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 89, Suppl. No. 1, C1V89S1P062 (2011) [5 pages]

http://creativecommons.org/licenses/by/3.0/

	1. Introduction
	2. Formulation
	References

